Two-dimensional algebro-geometric difference operators

نویسندگان

  • A. A. Oblomkov
  • A. V. Penskoi
چکیده

A generalized inverse problem for a two-dimensional difference operator is introduced. Two operators, for which such a problem is solved (we call such operators algebro-geometric), are found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Moutard Transformation: an Algebraic Formalism via Pseudodifferential Operators and Applications

In this paper we consider the Moutard transformation [9] which is a twodimensional version of the well-known Darboux transformation. We give an algebraic interpretation of the Moutard transformation as a conjugation in an appropriate ring and the corresponding version of the algebro-geometric formalism for two-dimensional Schrödinger operators. An application to some problems of the spectral th...

متن کامل

The algebro-geometric solutions for Degasperis-Procesi hierarchy

Though completely integrable Camassa-Holm (CH) equation and Degasperis-Procesi (DP) equation are cast in the same peakon family, they possess the secondand third-order Lax operators, respectively. From the viewpoint of algebro-geometrical study, this difference lies in hyper-elliptic and non-hyper-elliptic curves. The non-hyper-elliptic curves lead to great difficulty in the construction of alg...

متن کامل

The Algebro-geometric Toda Hierarchy Initial Value Problem for Complex-valued Initial Data

We discuss the algebro-geometric initial value problem for the Toda hierarchy with complex-valued initial data and prove unique solvability globally in time for a set of initial (Dirichlet divisor) data of full measure. To this effect we develop a new algorithm for constructing stationary complex-valued algebro-geometric solutions of the Toda hierarchy, which is of independent interest as it so...

متن کامل

Algebro-geometric Schrödinger operators in many dimensions.

We collect known results about the Schrödinger operators L=-Delta+u(x), generalizing to higher dimension those algebro-geometric operators L=-d2/dx2+u(x) with rational, trigonometric and elliptic potential which appear in the finite-gap theory.

متن کامل

The Kdv Hierarchy and Associated Trace Formulas

A natural algebraic approach to the KdV hierarchy and its algebro-geometric finite-gap solutions is developed. In addition, a new derivation of associated higher-order trace formulas in connection with one-dimensional Schrödinger operators is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000